

21. If a,b,c,d are non negative integers and $a+b+c+d=4$, then the number of different values $a^2 + b^2 + c^2 + d^2$ can take is	6. If $2x + 3y + 4z = 120$ and $4x + 3y + 2z = 60$ then the average of <i>x</i> , <i>y</i> , and <i>z</i> is
(A) 2 (B) 3 (C) 4 (D) 5 (E) 6	(A) 90 (B) 60 (C) 10 (D) 18 (E) 9
22. When the hour hand moves from 4 to 5 in an hour at what time do the minute hand and hour hand come together?	7. The sum of eight consecutive integers is 2004. What is the largest of these integers?
(A) $4:18\frac{1}{3}$ (B) $4:21\frac{9}{11}$ (C) $4:30$ (D) $4:20$ (E) $4:22$	(A) 400 (B) 224 (C) 129 (D) 500 (E) 2004
23. Which of the following is (are) true if <i>p</i> and <i>q</i> are primes, and $p > q$? I $p^2 - q^2$ could be a prime	8. If a book is numbered starting with 1 and using 2004 digits, the number of pages in the book is
II $p^3 - q^3$ could be a prime	(A) 836 (B) 704 (C) 705 (D) 1002 (E) 501
III $p^4 - q^4$ could be a prime (A) All (B) III only (C) I and III only (D) I and II only (E) None	9. If $a \otimes b = \frac{a+b}{1+(a-b)^2}$, then the value of $1 \otimes (2 \otimes 3)$ is
24. If a sequence is given by x_1, x_2, x_3, \dots where $x_1=1, x_2=2$ and	(A) $\frac{15}{14}$ (B) $\frac{14}{13}$ (C) $\frac{13}{12}$ (D) $\frac{18}{12}$ (E) 5
$x_3 = \frac{x_2}{x_1}, x_4 = \frac{x_3}{x_2}, x_5 = \frac{x_4}{x_3}$ etc., then x_{100} equals (A) 1 (B) 2 (C) $\frac{1}{2}$ (D) $\frac{1}{4}$ (E) 4	10. What is the total number of squares of any size in the diagram (drawn to scale) shown?
 25. In a sequence of numbers any 4 consecutive terms add up to 30. If the 1st term and the 12th term are 5 and 11 respectively, then the 100th term is (A) 5 (B) 11 (C) 25 (D) 14 (E) 19 	(A) 27 (B) 34 (C) 39 (D) 40 (E) 42
5	2

11. Which of the following is (are) true for the sequence 11, 111, 1111, 1111, ...? I Every odd term is divisible by 11 II None of the terms is divisible by 7 III At least one term is a perfect square (A) I only (B) II only (C) III only (D) II and III only (E) None 12. If a fair coin is tossed 2004 times what is the probability of getting exactly one head? (A) $\left(\frac{1}{2}\right)^{2004}$ (B) $\left(\frac{1}{2}\right)^{2003}$ (C) $2004 \left(\frac{1}{2}\right)^{2004}$ (D) $1002 \left(\frac{1}{2}\right)^{2004}$ (E) $2003 \left(\frac{1}{2}\right)^{2004}$ 13. Which is the largest number in $\left\{\frac{123456}{234567}, \frac{123457}{234567}, \frac{123457}{234567}, \frac{123457}{234569}, \frac{123456}{234569}\right\}$? (A) $\frac{123456}{234567}$ (B) $\frac{123455}{234567}$ (C) $\frac{123457}{234567}$ (D) $\frac{123457}{234569}$ (E) $\frac{123456}{234569}$ 14. A rectangular box has dimensions all positive integers in meters and the volume of the box is 2004 m³. The minimum possible sum in meters of the three dimensions is (A) 173 **(B)** 174 (C) 175 (D) 180 (E) 181 15. Three distinct corners of a cube of volume 1 m³ are P, Q and R. Which of the following could be the sum of the lengths PQ and QR in meters ? II. $\sqrt{2} + \sqrt{3}$ III. $\sqrt{3} + \sqrt{3}$ I. 2 (A) I only (B) I and II only (C) All (D) None (E) III only 3

16. If 999 ×AB	C = DEF273 then	the value of A is	5		
(A) 6	(B) 7	(C) 8	(D) 9	(E) 0	
17. The remained	der when 2004^{200}	⁴ is divided by 10) is		
(A) 2	(B) 3	(C) 4	(D) 5	(E) 6	
18. The maximum number of elements that can be drawn from {1,2,3,,2001,2002,2003,2004} such that no two of them add up to 2005 is					
(A) 100	(B) 1003	(C) 1004	(D) 1005	(E) 2004	
19. The value of $(\log_2 3)(\log_3 4)(\log_4 5)(\log_5 6)(\log_6 7)(\log_7 8)$ equals					
(A) 2	(B) 4	(C) $\log_7 8$	(D) log ₂ 7	(E) 3	
20. In the magic star shown on the right a,b,c,d,e,f, and g takes distinct values in $\{2,3,7,8,9,10,12\}$ and the sum of any 4 numbers along any edge is 26. The value of g is (A) 7 (B) 8 (C) 9 (D) 10 (E) 11 (a) (b) 10 (b) (E) 11 (c) (c)					

Answers

Ouestion number	Answers		
1	100160000		
2	Saturday		
3	25		
4	$\sqrt{27} - \sqrt{26}$		
5	1:2		
6	10		
7	254		
8	704		
9	<u>14</u> 13		
10	42		
11	I only		
12	$_{2004}\left(\frac{1}{2}\right)^{2004}$		
13	<u>123457</u> 234567		
14	174		
15	I and II only		
16	7		
17	6		
18	1002		
19	3		
20	10		
21	5		
22	$4:21\frac{9}{11}$		
23	I and II only		
24	1		
25	11		
26	I and II only		
27	2		
28	<u> </u>		
29	0		
30	4		