1. The value of $10008^{2}-64$ is
(A) 9944
(B) 100160000
(C) 100080000
(D) 99440000
(E) 100640000
2. If Arjuna's birthday was on a Sunday last year and Murali's birthday was 300 days after Arjuna's, then Murali's birthday was on a
(A) Saturday
(B) Sunday
(C) Monday
(D) Tuesday
(E) Wednesday
3. The remainder when 5^{2004} is divided by 100 is
(A) 75
(B) 50
(C) 25
(D) 5
(E) 10
4. Which is the smallest number in
$\{\sqrt{7}-\sqrt{6}, \sqrt{12}-\sqrt{11}, \sqrt{17}-\sqrt{16}, \sqrt{22}-\sqrt{21}, \sqrt{27}-\sqrt{26}\}$?
(A) $\sqrt{7}-\sqrt{6}$
(B) $\sqrt{12}-\sqrt{11}$
(C) $\sqrt{17}-\sqrt{16}$
(D) $\sqrt{22}-\sqrt{21}$
(E) $\sqrt{27}-\sqrt{26}$
5. ABCD is a rectangle and $\mathrm{P}, \mathrm{Q}, \mathrm{R}, \mathrm{S}$ are the midpoints of $A B, B C, C D, A D$ respectively. Then area of PQRS : area of $A B C D$ is

(A) $1: 2$
(B) $1: 4$
(C) $1: 6$
(D) $1: 3$
(E) $1: 8$
6. Which of the following is (are) true if
$f(n)=$ the number of distinct primes that divide n for $n>1$
I $f(10)=f(12)$
II If $f(n)>1$, then $f(f(n))<f(n)$
III If $f(n)=3$, then $n<1000$
(A) All
(B) I and II only
(C) I only
(D) I and III only
(E) None
7. The number of ordered pairs (m, n) where m, n are integers that satisfy $2^{m} 2^{n}=2^{m n}$ is
(A) None
(B) 1
(C) 2
(D) 3
(E) 4
8. In the triangle shown below (not drawn to scale) $A B=B C=C D=D E=E A$. The angle α is
(A) $72{ }^{0}$
(B) 36°
(C) 18^{0}
(D) 45^{0}
(E) $60{ }^{0}$

9. In the correctly worked out addition problem below any letter can represent any digit but T, S, and L are non zero.

> THINK

$$
\frac{\text { S R I }}{\text { LANKAN }}
$$

The value of N is
(A) 1
(B) 0
(C) 2
(D) 3
(E) 4
30. If $x_{1}, x_{2}, x_{3}, y_{1}, y_{2}, y_{3}, z_{1}, z_{2}$, and z_{3} take only 1 and -1 , then the maximum value of $x_{1}\left(y_{2} z_{3}-y_{3} z_{2}\right)+x_{2}\left(y_{3} z_{1}-y_{1} z_{3}\right)+x_{3}\left(y_{1} z_{2}-y_{2} z_{1}\right)$ is
(A) 5
(B) 6
(C) 4
(D) 3
(E) 2
21. If a, b, c, d are non negative integers and $a+b+c+d=4$, then the number of different values $a^{2}+b^{2}+c^{2}+d^{2}$ can take is
(A) 2
(B) 3
(C) 4
(D) 5
(E) 6
22. When the hour hand moves from 4 to 5 in an hour at what time do the minute hand and hour hand come together?
(A) $4: 18 \frac{1}{3}$
(B) $4: 21 \frac{9}{11}$
(C) $4: 30$
(D) $4: 20$
(E) 4:22
23. Which of the following is (are) true if p and q are primes, and $p>q$?

$$
\begin{aligned}
& \text { I } p^{2}-q^{2} \text { could be a prime } \\
& \text { II } p^{3}-q^{3} \text { could be a prime } \\
& \text { III } p^{4}-q^{4} \text { could be a prime }
\end{aligned}
$$

(A) All
(B) III only
(C) I and III only
(D) I and II only
(E) None
24. If a sequence is given by $x_{1}, x_{2}, x_{3}, \ldots$ where $x_{1}=1, x_{2}=2$ and $x_{3}=\frac{x_{2}}{x_{1}}, x_{4}=\frac{x_{3}}{x_{2}}, x_{5}=\frac{x_{4}}{x_{3}}$ etc., then x_{100} equals
(A) 1
(B) 2
(C) $\frac{1}{2}$
(D) $\frac{1}{4}$
(E) 4
25. In a sequence of numbers any 4 consecutive terms add up to 30 . If the $1^{\text {st }}$ term and the $12^{\text {th }}$ term are 5 and 11 respectively, then the $100^{\text {th }}$ term is
(A) 5
(B) 11
(C) 25
(D) 14
(E) 19
6. If $2 x+3 y+4 z=120$ and $4 x+3 y+2 z=60$ then the average of x, y, and z is
(A) 90
(B) 60
(C) 10
(D) 18
(E) 9
7. The sum of eight consecutive integers is 2004. What is the largest of these integers?
(A) 400
(B) 224
(C) 129
(D) 500
(E) 2004
8. If a book is numbered starting with 1 and using 2004 digits, the number of pages in the book is
(A) 836
(B) 704
(C) 705
(D) 1002
(E) 501
9. If $a \otimes b=\frac{a+b}{1+(a-b)^{2}}$, then the value of $1 \otimes(2 \otimes 3)$ is
(A) $\frac{15}{14}$
(B) $\frac{14}{13}$
(C) $\frac{13}{12}$
(D) $\frac{18}{12}$
(E) 5
10. What is the total number of squares of any size in the diagram (drawn to scale) shown?

(A) 27
(B) 34
(C) 39
(D) 40
(E) 42
11. Which of the following is (are) true for the sequence $11,111,1111,11111, \ldots$?

I Every odd term is divisible by 11
II None of the terms is divisible by 7
III At least one term is a perfect square
(A) I only
(B) II only
(C) III only
(D) II and III only
(E) None
12. If a fair coin is tossed 2004 times what is the probability of getting exactly one head?
(A) $\left(\frac{1}{2}\right)^{2004}$
(B) $\left(\frac{1}{2}\right)^{2003}$
(C) $2004\left(\frac{1}{2}\right)^{2004}$
(D) $1002\left(\frac{1}{2}\right)^{2004}$
(E) $2003\left(\frac{1}{2}\right)^{2004}$
13. Which is the largest number in $\left\{\frac{123456}{234567}, \frac{123455}{234567}, \frac{123457}{234567}, \frac{123457}{234569}, \frac{123456}{234569}\right\}$?
(A) $\frac{123456}{234567}$
(B) $\frac{123455}{234567}$
(C) $\frac{123457}{234567}$
(D) $\frac{123457}{234569}$
(E) $\frac{123456}{234569}$
14. A rectangular box has dimensions all positive integers in meters and the volume of the box is $2004 \mathrm{~m}^{3}$. The minimum possible sum in meters of the three dimensions is
(A) 173
(B) 174
(C) 175
(D) 180
(E) 181
15.Three distinct corners of a cube of volume $1 \mathrm{~m}^{3}$ are P, Q and R. Which of the following could be the sum of the lengths PQ and QR in meters ?
I. 2
II. $\sqrt{2}+\sqrt{3}$
III. $\sqrt{3}+\sqrt{3}$
(A) I only
(B) I and II only
(C) All
(D) None
(E) III only
16. If $999 \times \mathrm{ABC}=\mathrm{DEF} 273$ then the value of A is
(A) 6
(B) 7
(C) 8
(D) 9
(E) 0
17. The remainder when 2004^{2004} is divided by 10 is
(A) 2
(B) 3
(C) 4
(D) 5
(E) 6
18. The maximum number of elements that can be drawn from $\{1,2,3, \ldots, 2001,2002,2003,2004\}$ such that no two of them add up to 2005 is
(A) 1002
(B) 1003
(C) 1004
(D) 1005
(E) 2004
19. The value of $\left(\log _{2} 3\right)\left(\log _{3} 4\right)\left(\log _{4} 5\right)\left(\log _{5} 6\right)\left(\log _{6} 7\right)\left(\log _{7} 8\right)$ equals
(A) 2
(B) 4
(C) $\log _{7} 8$
(D) $\log _{2} 7$
(E) 3
20. In the magic star shown on the right a, b, c, d, e, f, and g takes distinct values in $\{2,3,7,8,9,10,12\}$ and the sum of any 4 numbers along any edge is 26 . The value of g is

Answers

Question number	Answers
1	100160000
2	Saturday
3	25
4	$\sqrt{27}-\sqrt{26}$
5	1:2
6	10
7	254
8	704
9	$\frac{14}{13}$
10	42
11	I only
12	$2004\left(\frac{1}{2}\right)^{2004}$
13	$\frac{123457}{234567}$
14	174
15	I and II only
16	7
17	6
18	1002
19	3
20	10
21	5
22	$4: 21 \frac{9}{11}$
23	I and II only
24	1
25	11
26	I and II only
27	2
28	36°
29	0
30	4

