1. If $A \neq 0$ and

then the value of $C$ is
(A) 0
(B) 2
(C) 5
(D) 8
(E) 9
2. The number of regions a plane could be divided into by three distinct straight lines on the plane is (For example, if two straight lines intersect, then the plane is divided into four regions)

| I | 7 |
| :--- | :--- |
| II | 6 |
| III | 4 |

(A) I only
(B) I and II only
(D) II and III only
(E) All
(C) I and III only
3. What is the average of $6,6,66,66,666,666,6666,6666,66666,66666,666666,666666$ ?
(A) 11111
(B) 12345
(C) 111111
(D) 123456
(E) 654321
4. Let $S_{1}$ and $S_{2}$ be two circles having the same center and with radii $r_{1}$ and $r_{2}$ respectively. If arc length $A B=\operatorname{arc}$ length $X Y$ and $3 A \hat{C} B=2 X \hat{Z} Y$, then $\frac{r_{1}}{r_{2}}$ is
(A) $\frac{1}{3}$
(B) $\frac{2}{3}$
(C) $\frac{3}{2}$
(D) 3
(E) 6

5. The number of solution pairs $(x, y)$ of positive integers of $4<x+y \leq 7$ is
(A) 14
(B) 15
(C) 28
(D) 30
(E) 32
26. At a dance the boys Wimal, Kamal and Bimal dance only with the girls Sita, Rita, Kamala and Nimala. There are three dances in all and the boys take part in all three dances. However one girl does not dance at all. Also no boy dances with the same girl twice.

I Probability (Sita does not dance at all) $=\frac{1}{4}$
II Probability (Wimal's first dance is with Sita) $=\frac{1}{4}$
III Probability (Wimal dances with Sita first, Rita second and Kamala third) $=\frac{1}{12}$
(A) Only I is correct
(B) Only I and II are correct
(C) Only I and III are correct
(D) Only II and III are correct
(E) All are correct
27. Let $A B C$ be a triangle right-angled at $C$. The lengths of the sides $A C, B C$ and $A B$ are $a, b$ and $c$ respectively. The perpendicular drawn from the vertex $C$ to $A B$ has length $h$, and divides $A B$ into two segments of lengths $m$ and $n$ respectively. Which one of the following is not always true?
(A) $\frac{a^{2}}{b^{2}}=\frac{m}{n}$
(B) $n=\frac{b^{2}}{c}$
(C) $h^{2}=m n$
(D) $\frac{h^{2}}{n}=\frac{b^{2}}{c}$
(E) $h=\frac{a b}{c}$

28. In the correctly worked out subtraction problem below on the right, any letter can represent any digit but $S, A$ and $N$ are non zero, and $E=3$ and $P=9$.

The number of sets of values for the letters is
(i.e., the number of subtraction problems it gives rise to is)
(A) 0
(B) 2
(C) $3 \quad$ (D) 4
(E) 5

| $S$ | $R$ | $I$ | $L$ | $A$ | $N$ | $K$ | $A$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $A$ | $P$ | $I$ | $E$ | $C$ | $E$ |
|  | $N$ | $O$ | $P$ | $E$ | $A$ | $C$ | $E$ |

29. A hare races with a tortoise that has a head start of $d_{0}$ meters. The hare and the tortoise have speeds of $u \mathrm{~ms}^{-1}$ and $v \mathrm{~ms}^{-1}$ respectively, and $u>v$. Let $t_{1}=\frac{d_{0}}{u}, d_{1}=v t_{1}, t_{2}=\frac{d_{1}}{u}, d_{2}=v t_{2}, \ldots$. Which of the following is/are true?

$$
\text { I For all } n, t_{n}>0 \quad \text { II } \quad \text { For all } n, t_{1}+\ldots+t_{n}<\frac{d_{0}}{u-v}
$$

III The hare overtakes the tortoise after $\frac{d_{0}}{u-v}$ seconds
(A) I only
(B) II only
(C) I and II only
(D) I and III only
(E) All
30. If for a positive integer $n, f(n)=$ the sum of the digits of $n$, which of the following is /are true?
I For all $n, f(n) \leq n$
II There is $n$ such that $f(n \times f(n))=3$

III For all $m$ and $n, f(m+n)=f(m)+f(n)$
(A) I only
(B) II only
(C) III only
(D) I and II only
(E) I and III only
21. For any positive integer $n, x_{n+1}=\frac{1}{1+x_{n}}$ and $y_{n+1}=\frac{1-y_{n}}{y_{n}}$. Consider the following:
I If $x_{1} y_{1}=-1$ then $x_{3} y_{3}=-1$
II If $x_{3} y_{3}=-1$ then $x_{1} y_{1}=-1$

III If $x_{3}=y_{1}$ then $x_{2}=y_{2}$
(A) Only I is correct
(B) Only I and II are correct
(C) Only I and III are correct
(D) Only II and III are correct
(E) All are correct
22. Consider the following "proof":

Step 1: Let $x=y+1$
Step 2: Then $2007 x-2006 x=2007 y-2006 y+2007-2006$
Step 3: Rearranging and factoring out, $2007(x-y-1)=2006(x-y-1)$
Step 4: Canceling $x-y-1,2007=2006 "$
What can you conclude?
I Step 1 is incorrect
II Step 2 is incorrect
III Step 4 is incorrect
(A) I only
(B) II only
(C) III only
(D) I and II only
(E) I and III only
23. Supun spends 40 rupees everyday at the open canteen of the Faculty of Science, University of Colombo to buy some of the following.
a) Banis which are 5 rupees each
b) Malupan which are 5 rupees each
c) Cutlets which are 10 rupees each

In how many ways can he spend his money on any given day?
(A) 20
(B) 24
(C) 25
(D) 30
(E) 50
24. Each student who takes part in the SLMC 2007 competition is given a five digit index number. A pair of numbers with the same number of digits is said to be matching if the average of each pair of corresponding digits of the two numbers is again a digit. If no two students are assigned the same index number, what is the minimum number of students that should be picked in order to ensure that the index numbers of at least two students in the group picked are matching?
(A) 30
(B) 31
(C) 32
(D) 33
(E) 34
25. The coefficient of $x^{2}$ in $(1+x)(1+2 x)(1+3 x)(1+4 x)(1+5 x)(1+6 x)$ is
(A) 100
(B) 125
(C) 150
(D) 175
(E) 200
6. For integers $a$ and $b, a \otimes b=\frac{b}{1+\frac{1}{a}}$, where $1 \leq a \leq 10,1 \leq b \leq 10$. How many pairs
$(a, b)$ are there such that $a \otimes b$ is an integer?
(A) 12
(B) 14
(C) 15
(D) 17
(E) 18
7. In a chessboard which consists of an $8 \times 8$ grid of squares, a king can move one square at a time in any direction including diagonally. If a king stands on the lower left corner of the chess board, in how many ways can the king move to the square labeled $A$ in 4 moves?

(A) 6
(B) 8
(C) 10
(D) 12
(E) 14
8. A three digit number is called a lucky number if it is a product of 4 different prime numbers. Which one of the following numbers is a lucky number?
(A) 110
(B) 126
(C) 130
(D) 210
(E) 550
9. Which of the following is/are true about lucky numbers as defined in problem 8 ?

I Every lucky number is divisible by 2
II Every lucky number is divisible by 3
III Every lucky number is divisible by 6
(A) None
(B) I only
(C) I and II only
(D) I and III only
(E) All
10. $\left(2007^{3}-3(2007)^{2}(1007)+3(2007)(1007)^{2}-1007^{3}\right)^{2}$ equals
(A) $10^{12}$
(B) $10^{18}$
(C) $(3114)^{6}$
(D) $10^{24}$
(E) $(3114)^{12}$

## 11. The number of solution pairs $(x, y)$ of positive integers of the equation $223 x+3 y=2007$ is

(A) 0
(B) 1
(C) 2
(D) 3
(E) 6
12. The number $5^{2007}-3^{2007}$ is not divisible by
(A) 2
(B) 7
(C) 19
(D) 49
(E) 98
(Hint: For any positive integer $\left.n, a^{n}-b^{n}=(a-b)\left(a^{n-1}+a^{n-2} b+\cdots+a b^{n-2}+b^{n-1}\right)\right)$
13. Which one of the following is correct?
(A) $2^{6}-1$ is a prime
(B) $2^{7}-1$ is not a prime
(C) $2^{8}-1$ is a prime
(D) $2^{10}-1$ is a prime
(E) $2^{11}-1$ is not a prime
14. A positive integer $n$ has only the digits 3 and 6 , and each of them occurs at least once. Consider the following:

I If $n$ is divisible by 6 then the last digit on the right must be 6
II If the last digit on the right is 6 , then $n$ must be divisible by 6 III If $n$ has ten 3 digits and one 6 digit, then $n$ must be divisible by 9
(A) All are incorrect
(B) Only I and II are correct
(C) Only I and III are correct
(D) Only II and III are correct
(E) All are correct
15. A circle of radius 2 is inscribed in the trapezium $A B C D$ where $A B=10$ and $A \hat{D} C=B \hat{C} D=90^{\circ}$. The area of the trapezium is

(A) 20
(B) 24
(C) 28
(D) 32
(E) 36
16. In the correctly worked out multiplication problem below, different letters represent different digits and $G \neq 0$.

$$
4 \times G O O D=L U C K
$$

The maximum value $L U C K$ can take is
(A) 8460
(B) 8476
(C) 9760
(D) 9784
(E) none of the given
17. A four digit number has exactly two digits in common with each of the following numbers; $648,362,147$, and 129 . What is the sum of its digits?
(A) 13
(B) 14
(C) 15
(D) 16
(E) 17
18. A quiz had 3 questions on three ex-presidents Mr. Tough, Mrs. Emotional and Mr. Action of the Land of Liars. Consider the following answers.

|  | Question 1 | Question 2 | Question 3 |
| :--- | :--- | :--- | :--- |
| Student 1 | Mr. Tough | Mr. Tough | Mr. Action |
| Student 2 | Mrs. Emotional | Mr. Tough | Mr. Action |
| Student 3 | Mr. Action | Mr. Tough | Mr. Tough |

If each student had exactly one correct answer, what can you conclude?
I Mr. Action is the correct answer to at least two questions
II Mr. Tough is the correct answer to exactly one question
III Mrs. Emotional is the correct answer to exactly one question
(A) Nothing
(B) I only
(C) III only
(D) I and III only
(E) II and III only
19. The Land of Liars has a jumbo cabinet of 100 ministers. Monthly allocation for each of the 100 ministries in millions of rupees is 15,10 , or 5 according to its size, and the monthly allocation for all the ministries is 1200 million rupees. If the cabinet of 100 ministers each with one ministry consists of only green, blue and red clansmen, and if green, blue and red ministers have accepted only big ( 15 million), medium ( 10 million), and small ( 5 million) ministries respectively, what is the minimum number of green ministers in the cabinet?
(A) 39
(B) 40
(C) 41
(D) 42
(E) None of the given
20. What is the least number of colors you need to color all the hexagons in the following diagram so that no two hexagons having a common side have the same color?
(A) 2 (B) 3
(C) 4
(D) 5
(E) 6


