		$\begin{array}{cc} A & B \\ \times \end{array}$	C D E	
		2 0	0 7	
then the value	of C is			
(A) 0	(B) 2	(C) 5	(D) 8	(E) 9
The number of (For example	of regions a plan , if two straight	e could be divided i lines intersect, then	nto by three disting the plane is divid	ect straight lines on the plane is ed into four regions)
I II III	7 6 4			
(A) I only (D) II and III	only	(B) I and II onl (E) All	у	(C) I and III only
. What is the a	verage of 6, 6, 6	6, 66, 666, 666, 666	6, 6666, 66666, 6	6666, 666666, 666666?
(A) 11111	(B) 12345	(C) 111111	(D) 123456	(E) 654321
. Let S_1 and S_2 b	e two circles hav	ving the same center	r and with radii r_1	and r_2 respectively.
If arc length A	$B = \operatorname{arc} \operatorname{length} \lambda$	$XY \text{ and } 3A\hat{C}B = 2X\hat{Z}$	Y, then $\frac{r_1}{r_2}$ is	A
(A) $\frac{1}{3}$ (D) 3	(B) $\frac{2}{3}$ (E) 6	(C) $\frac{3}{2}$	3	S_2 S_1 S_1 S_2 S_1 S_2 S_1 S_2 S_1 S_2 S_1 S_2 S_2 S_1 S_2 S_2 S_2 S_2 S_1 S_2
. The number o	f solution pairs ((x, y) of positive inte	egers of $4 < x +$	$y \le 7$ is
(A) 14	(B) 15	(C) 28	(D) 30	(E) 32

26. At a dance the boys <i>Wimal</i> , <i>Kamal</i> and <i>Bimal</i> dance only with the girls <i>Sita</i> , <i>Rita</i> , <i>Kamala</i> and <i>Nimala</i> . There are three dances in all and the boys take part in all three dances. However one girl does not dance at all. Also no boy dances with the same girl twice.							
Ι	Probability (<i>Sita</i> does not dance at all) = $\frac{1}{4}$						
II	Probability (Wimal	's first dance is with <i>Sita</i>) =	$\frac{1}{4}$				
III	Probability (Wimal	dances with Sita first, Rita s	econd and <i>Kamala</i> third) = $\frac{1}{12}$				
(A) Only I is (D) Only II a	s correct and III are correct	(B) Only I and II are correct(E) All are correct	ct (C) Only I and III are correct				
27. Let <i>ABC</i> be respectively two segmen	a triangle right-angl . The perpendicular ts of lengths <i>m</i> and <i>n</i>	led at C . The lengths of the drawn from the vertex C to respectively. Which one of	sides AC , BC and AB are a , b and c AB has length h , and divides AB into the following is not always true? C				
(A) $\frac{a^2}{b^2} = \frac{m}{n}$ $h^2 = h^2$	(B) $n = \frac{b^2}{c}$	(C) $h^2 = mn$	a h b				
(D) $\frac{n}{n} = \frac{c}{c}$	- (E) $h = \frac{ab}{c}$	$_{A}$	$c \qquad n \qquad B$				
28. In the correct digit but <i>S</i> , <i>A</i>	tly worked out subtra and <i>N</i> are non zero,	action problem below on the and $E = 3$ and $P = 9$.	right, any letter can represent any				
The number of (i.e., the number	of sets of values for t ber of subtraction pro	he letters is oblems it gives rise to is)	SRILANKA APIECE				
(A) 0 (B)	2 (C) 3 (D) 4	(E) 5	N O P E A C E				
29. A hare race	es with a tortoise the	at has a head start of d_0 m	eters. The hare and the tortoise have				
speeds of u	speeds of $u \text{ ms}^{-1}$ and $v \text{ ms}^{-1}$ respectively, and $u > v$. Let $t_1 = \frac{d_0}{d_1}$, $d_1 = vt_1$, $t_2 = \frac{d_1}{d_1}$, $d_2 = vt_2$,						
Which of the	e following is/are tru	le?	u u				
I For	r all $n, t_n > 0$	II For all $n, t_1 + \dots$	$+t_n < \frac{a_0}{u-v}$				
III The	e hare overtakes the	tortoise after $\frac{d_0}{d_0}$ seconds	u - v				
(A) I only	(B) II only	(C) I and II only (D) I a	and III only (E) All				
30. If for a positive integer n, $f(n)$ = the sum of the digits of n, which of the following is /are true?							
I For all <i>n</i>	$f(n) \le n$	II There is	s <i>n</i> such that $f(n \times f(n)) = 3$				
III For all <i>n</i>	n and n, f(m+n) =	f(m) + f(n)					
(A) I only	(B) II only	(C) III only (D) I and	II only (E) I and III only				
		(6)					

21. For any positive integer *n*, $x_{n+1} = \frac{1}{1+x_n}$ and $y_{n+1} = \frac{1-y_n}{y_n}$. Consider the following: II If $x_3y_3 = -1$ then $x_1y_1 = -1$ I If $x_1 y_1 = -1$ then $x_3 y_3 = -1$ III If $x_3 = y_1$ then $x_2 = y_2$ (A) Only I is correct (B) Only I and II are correct (C) Only I and III are correct (D) Only II and III are correct (E) All are correct 22. Consider the following "proof": Step 1: Let x = y + 1Step 2: Then 2007x - 2006x = 2007y - 2006y + 2007 - 2006Step 3: Rearranging and factoring out, 2007(x - y - 1) = 2006(x - y - 1)Step 4: Canceling x - y - 1, 2007 = 2006 " What can you conclude? Step 1 is incorrect Ι Step 2 is incorrect Π Step 4 is incorrect III (C) III only (D) I and II only (E) I and III only (A) I only (B) II only 23. Supun spends 40 rupees everyday at the open canteen of the Faculty of Science, University of Colombo to buy some of the following. a) *Banis* which are 5 rupees each b) *Malupan* which are 5 rupees each c) *Cutlets* which are 10 rupees each In how many ways can he spend his money on any given day? (A) 20 (B) 24 (C) 25 (D) 30 (E) 50 24. Each student who takes part in the SLMC 2007 competition is given a five digit index number. A pair of numbers with the same number of digits is said to be matching if the average of each pair of corresponding digits of the two numbers is again a digit. If no two students are assigned the same index number, what is the minimum number of students that should be picked in order to ensure that the index numbers of at least two students in the group picked are matching? (A) 30 (B) 31 (C) 32 (D) 33 (E) 34 25. The coefficient of x^2 in (1+x)(1+2x)(1+3x)(1+4x)(1+5x)(1+6x) is (A) 100 (B) 125 (C) 150 (D) 175 (E) 200 5

6. For integers <i>a</i> and <i>b</i> , $a \otimes b = \frac{b}{1 + \frac{1}{a}}$, where $1 \le a \le 10$, $1 \le b \le 10$. How many pairs							
(a, b) are there	e such that $a \otimes b$	b is an integer?					
(A) 12	(B) 14	(C) 15	(D) 17	(E) 18			
7. In a chessboar any direction i how many way	d which consists ncluding diagona ys can the king n	of an 8×8 grid of ally. If a king stand nove to the square 1	squares, a king cass on the lower left abeled A in 4 mo	an move one squar ft corner of the che ves?	re at a time in ess board, in		
(A) 6	(B) 8	(C) 10	(D) 12	(E) 14			
8. A three digit r one of the foll	8. A three digit number is called a <i>lucky number</i> if it is a product of 4 different prime numbers. Which one of the following numbers is a lucky number?						
(A) 110	(B) 126	(C) 130	(D) 210	(E) 550			
9. Which of the following is/are true about lucky numbers as defined in problem 8?							
IEvery lucky number is divisible by 2IIEvery lucky number is divisible by 3IIIEvery lucky number is divisible by 6							
(A) None	(B) I only	(C) I and II onl	y (D) I a	nd III only	(E) All		
10. $(2007^{3} - 3(2007)^{2}(1007) + 3(2007)(1007)^{2} - 1007^{3})^{2}$ equals							
(A) 10^{12}	(B) 10 ¹⁸	(C) $(3114)^6$	(D) 10 ²⁴	(E) (3114) ¹²			

2

	11. The numbe	r of solution pairs	(x, y) of positiv	ve integers of the eq	uation $223x + 3y = 2007$ is			
	(A) 0	(B) 1	(C) 2	(D) 3	(E) 6			
	12. The numbe	r $5^{2007} - 3^{2007}$ is not	ot divisible by					
	(A) 2	(B) 7	(C) 19	(D) 49	(E) 98			
	(<u>Hint</u> : For a	ny positive integer	$n,a^n-b^n=(a)$	$(a^{n-1} + a^{n-2}b + a^{n-2}b)$	$\cdots + ab^{n-2} + b^{n-1}))$			
13. Which one of the following is correct?								
	(A) $2^6 - 1$ i	is a prime	(B) $2^7 - 1$ i	is not a prime	(C) $2^8 - 1$ is a prime			
	(D) $2^{10} - 1$	is a prime	(E) $2^{11} - 1$	is not a prime				
	14. A positive following:	integer <i>n</i> has only	the digits 3 and	l 6, and each of ther	n occurs at least once. Consid	er the		
	Т	If <i>n</i> is divisible	by 6 then the	last digit on the righ	t must he 6			
	II If the last digit on the right is 6, then <i>n</i> must be divisible by 6							
	III If <i>n</i> has ten 3 digits and one 6 digit, then <i>n</i> must be divisible by 9							
	(A) All are	incorrect	(B) Only	I and II are correct	(C) Only I and III are	correct		
	(D) Only II	and III are correct	(E) All a	re correct				
	15. A circle of radius 2 is inscribed in the trapezium <i>ABCD</i> where $AB = 10$ and							
	$\hat{ADC} = \hat{BCD} = 90^{\circ}$. The area of the trapezium is							
				D				
			B	C				
	(A) 20	(B) 24	(C) 28	(D) 32	(E) 36			

-(3)

16. Iı d	n the correctly work ligits and $G \neq 0$.	ked out multiplication $4 \times GOOD = LUCh$	problem below, differ	rent letters represent differen	ıt		
т	The maximum value	e <i>LUCK</i> can take is					
1							
(4	A) 8460 (B) 8	8476 (C) 9760	(D) 9784	(E) none of the given			
17. A 64	17. A four digit number has exactly two digits in common with each of the following numbers; 648, 362, 147, and 129. What is the sum of its digits?						
(A	A) 13 (B)	14 (C) 15	(D) 16	(E) 17			
18. A th	18. A quiz had 3 questions on three ex-presidents <i>Mr. Tough, Mrs. Emotional</i> and <i>Mr. Action</i> of the <i>Land of Liars</i> . Consider the following answers.						
		Question 1	Question 2	Question 3			
;	Student 1	Mr. Tough	Mr. Tough	Mr. Action			
5	Student 2	Mrs. Emotional	Mr. Tough	Mr. Action			
5	Student 3	Mr. Action	Mr. Tough	Mr. Tough			
Student 5Mr. ActionMr. TougnMr. ToughIf each student had exactly one correct answer, what can you conclude?IIMr. Action is the correct answer to at least two questionsIIMr. Tough is the correct answer to exactly one questionIIIMrs. Emotional is the correct answer to exactly one question(A) Nothing(B) I only(C) III only(D) I and III only(E) II and III only19. The Land of Liars has a jumbo cabinet of 100 ministers. Monthly allocation for each of the 100 ministries in millions of rupees is 15, 10, or 5 according to its size, and the monthly allocation for all the ministries is 1200 million rupees. If the cabinet of 100 ministers each with one ministry consists of only green, blue and red clansmen, and if green, blue and red ministries respectively, what is the minimum number of green ministers in the cabinet?							
((A) 39 (B)	40 (C) 41	(D) 42	(E) None of the given			

20. What is the least number of colors you need to color all the hexagons in the following diagram so that no two hexagons having a common side have the same color?

(4)

(A) 2 (B) 3 (C) 4 (D) 5 (E) 6