1. $a \operatorname{and} \left(a + \frac{1}{a}\right)$ are both positive integers. How many values can a take? (A) 0 (B) 1 (C) 2 (D) 3 (E) 4 2. Two identical rectangles are divided into three and two equal parts as shown. Let the shaded	 26. For real numbers a and b which are not both zero, define a⊕b by a⊕b = a²b+b²a/a²+b². Which of the following is/are true? I. For real numbers a and b, if a⊕b = a then a = b. II. There exist a, b natural numbers such that a⊕b = 2013. III. There are only a finite number of 2-tuples (a, b) such that a⊕b ≥ a + b.
figures 1 and 2 be A and B respectively. How many B's are there in A?	(A) I only (B) II only (C) I and II only (D) II and III only (E) All
Figure 1 Figure 2	 27. Consider the infinite sequence 6, 96, 996, 9996,, 999996, In the nth term of the sequence the digit 9 appears (n - 1) times. Which of the following statements are true? I. There exists a perfect square in the sequence. II. There exist infinitely many terms in the sequence which are divisible by 8. III. If a term in the sequence is divisible by 8 then it is also divisible by 16.
$(1)^{1}$ (D) ³ (D) ¹ (D) ¹	(A) I only (B) III only (C) I and II only (D) II and III only (E) None
 (A) ⁻/₃ (B) ⁻/₂ (C) 2 (D) 1 ⁻/₃ (E) 1 ⁻/₃ 	ts under $\begin{array}{ c c c c c c } 28. \ \mbox{Let } f(n) = \ \mbox{Number of even positive divisors of } n - \ \mbox{Number of odd positive divisors of } n \ ; \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
Which of the following is the largest decimal number?	III. $f(n) < 0$ for half or more of the natural numbers from 1 to 2012^{2013} .
 (A) 0. 71 (B) 0.717 (C) 0.7177 (D) 0.71771 (E) 0.7171 4. Sarath and Kamala each have a collection of marbles. If Sarath gives 4 marbles to Kamala, the would both have an equal number of marbles. If Kamala gives 4 marbles to Sarath then Sarath have 3 times as many marbles as Kamala.	 (A) I only (B) I and II only (C) I and III only (D) II and III only (E) All 29. A positive integer is said to be <i>cool</i> if it can be written as a sum of two or more consecutive positive integers. Which of the following statements is/are true? I. 2013 is a <i>cool</i> number. II. If a number is not <i>cool</i> then all of its multiples are not <i>cool</i>. III. There are infinitely many numbers which are not <i>cool</i>.
How many marbles does Sarath have?	(A) I only (B) II only (C) I and III only (D) II and III only (E) All
 (A) 12 (B) 16 (C) 20 (D) 24 (E) 28 5. Dileepa takes a wooden cube with side length 2013 cm and colours it red. Then, he cuts it int smaller cubes with side length 1 cm. How many cubes are there with exactly two faces coloure 	 30. Two persons A and B are each wearing a hat with a number written on it. Neither A nor B can see the number on their own hat but they can see the number on the other's. A sees number 5 on B's hat and B sees number 4 on A's hat. They are told that A has the product of two positive integers written on her hat and that B has the sum of the same two numbers written on her hat. First B is asked whether she knows for sure what the two numbers are. If her answer is 'no', A is
(A) 2011×8 (B) 2013×8 (C) 2011×12 (D) 2013×12 (E) (2013×2013 ·	$(-4)\times 6$ asked the same question and so on until someone answers 'yes'. Assuming that both are perfect logicians and answer truthfully, who says 'yes' first and when?
6. In the initial round of a soft ball cricket tournament, 45 matches are played where every particle team plays a match against each of the other teams exactly once. How many teams are ther tournament?	cipating (A) B on her 2^{nd} question (B) B on her 3^{rd} question (C) A on her 1^{st} question (D) A on her 2^{nd} question
(A) 7 (B) 8 (C) 9 (D) 10 (E) 11	(E) No one will answer 'yes'

	(A) 1	(B) 2	(C) 3	(D) 4	(E) 5	
8.	A sand timer consists of two connected glass balls. The passage of time is measured by allowing san to trickle down from top to bottom. Given two sand timers of 4 and 9 minutes, which of the following is/are true?					
	I. An e II. An e III. An e	exact time of 13 mi exact time of 16 mi exact time of 29 mi	nutes can be measur nutes can be measur nutes can be measur	red. red. red.		
	(A) I only	(B) II only	(C) III only	(D)I and II o	only (E) All	
9.	Dartboard 1 d circles with ra equal sectors r game of chan- gain 1 point. E shoots darts of 1 and 2, an eq <i>Anwar</i> winnin	contains concentric adii 1, 2, 3 and 4 a respectively and the ce. They shoot dar Each player has an a nly at dartboard 1, ual number of time ag, $P(B)$ the probal	e circles with radii units. The largest ci- en shaded as below. ts at Dartboard 1 o equal probability of <i>Balachandran</i> only s at each. Each play pility of <i>Balachand</i>	3 and 4 units. D rcles in each dar <i>Anwar</i> , <i>Balachan</i> r Dartboard 2. W hitting any spot o at dartboard 2 and yer shoots 10 darts <i>ran</i> winning and	Dartboard 2 contributed 2 contributed are division and chan and Chan hen they hit a second each of the date of each of the date d Charith at boos. Let $P(A)$ be to P(C) the proba	ntains concended into 6 and <i>rith</i> are playin shaded area that artboards. <i>Any</i> th the dartboar the probability bility of <i>Cha.</i>

(A) P(A) = P(C) = P(B)(B) P(B) < P(C) < P(A)(C) P(A) < P(C) < P(B)(D) P(B) < P(C) = P(A)(E) P(C) < P(A) = P(B)

10. Your SLMC 2013 booklet has 8 pages. How many ways are there to reach the end of the booklet starting from the first page and without flipping leaves backwards and without going through a page twice?

(A) 4	(B) 7	(C) 8	(D) 15	(E) 16

11. Three friends want to buy exercise books given at hugely discounted prices of Rs. 45, Rs. 50, Rs. 65, Rs. 70 and Rs. 100 from the school bookstore. The bookstore owner however prefers having more customers than having a few customers buying several exercise books. So, a customer buying his x^{th} exercise book has to pay x times the original price. The three friends who have not bought any exercise books from the bookstore before, decide to buy a total of 5 books, one from each type. What is the minimum cost at which they could buy all the 5 different exercise books?	16. Which of the following fractions can be written as a terminating decimal? (A) $\frac{2013}{2^{2013}}$ (B) $\frac{2^{2013}}{2013 \times 5^{2013}}$ (C) $\frac{5^{2013}}{2013 \times 2^{2013}}$ (D) $\frac{2^{2013} \times 5^{2013}}{2013}$ (E) $\frac{2013}{3^{2013}}$ 17. {3.7, 4.1, <i>a</i> , 8.5, 9.2, 2 <i>a</i> } The six numbers shown are listed in increasing order. Which one of the following lists does not
(A) 270 (B) 305 (C) 330 (D) 365 (E) 425	given above?
12. There are 4 balls named A, B, C and D arranged in the given order in a row. Two operations are performed on this row of balls.Operation 1: Take the first ball and place it before the last one.Operation 2: Take the last ball and place it after the first one.	 (A) 4.0, 5.2, 7.3, 11.6, 12.9 (B) 5.1, 7.5, 11.1, 12.3, 14.0 (C) 7.3, 11.6, 12.2, 14.1, 15.3 (D) 5.8, 8.1, 11.6, 12.9, 13.3 (E) 5.4, 7.3, 10.6, 12.9, 13.0
These operations are performed alternatively, with the first step being operation 1. What would be the arrangement of the balls after step 2013? (A) $ABCD$ (B) $BCAD$ (C) $BDCA$ (D) $DCBA$ (E) None of the given	18. In a grocery store, oranges are stacked in a pyramidal way such that the oranges in the $(k + 1)^{\text{th}}$ layer are stacked by filling all the pockets (formed by 4 oranges) in the k^{th} layer. The oranges are stacked with a base of $m \times n$ oranges (where $m \ge n$) in the shape of a rectangle with n oranges as its width
(A) ADCD (D) DCAD (C) DDCA (D) DCDA (E) None of the given	and <i>m</i> oranges as its length, in layers one above the other until no more oranges can be stacked. How many oranges are in the top layer?
13. Which of the following is/are correct?	
1. $1/3$ in base 3 is 0.1	(A) m - n - 1
II. $1/3$ in base 10 is 0.3	(B) m - n
III. 1 equals 0.9 in base 10.	(C) m - n + 1 $(D) m + n$
D. C.	(D) $m + n$ (F) $m + n + 1$
(A) I only (B) II only (C) III only (D) I and II only (E) All	
14. APQC, ARQB and BPRC are identical semi circles lying on a plane. Let $\angle APQ = \theta$. (As shown in the figure which is not drawn to scale) What is the value of θ ?	19. Manuja used a wire to make a frame of a regular pentagram (A regular pentagram is a star formed by extending the sides of a regular pentagon). He kept the wire straight for the sides and at the corners he bent the wire in circular arcs. <i>AB</i> in the figure is one such arc.
$(A) 120^{\circ} (B) 135^{\circ} (C) 50\sqrt{6^{\circ}} (D) 105^{\circ} (E) 108^{\circ} (C) 50\sqrt{6^{\circ}} ($	What is the angle subtended by the arc AB on its center?(A) 36° (B) 72° (C) 108° (D) 144° (E) 162°
 15. In the following diagram, the 10 indicated nodes (dots) have to be coloured so that no two nodes of the same colour share an edge (a straight line joining two nodes). What is the minimum number of colours required to colour the nodes? (A) 1 (B) 2 (C) 3 (D) 4 	 20. Two players play a game with two piles of 5 stones and 18 stones. At each turn, the player takes from the bigger pile a non-zero multiple of the number of stones in the smaller pile. The first player to empty a pile is the winner. They take turns alternatively. Which of the following is true? (A) The first player has a winning strategy. (B) The second player has a winning strategy. (C) The game will not end. (D) No player has a winning strategy.
(E) 5	(E) The second player always loses.