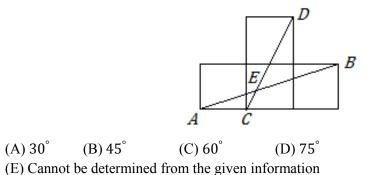

1. An artist has drawn 2017 in a square grid of side 1 <i>cm</i> squares using straight line segments as shown below. What is the total length of line segments in centimeters he has used?	27.Let $S = \{1, 2,, 3000\}$. What is the least possible value of k such that any subset A of Swith 101 elements contains two distinct numbers a and b such that $ a - b \le k$			
	(A) 29 (B) 39 (C) 49 (D) 59 (E) 69			
	28. In the <i>Land of Liars</i> everyone lies 6 days a week and tells the truth on the remaining day, and this day of the week is the same for each inhabitant. How many days of a week an inhabitant of the <i>Land of Liars</i> can make the following statement?			
(A) $20 + 10\sqrt{2}$ (B) $21 + 10\sqrt{2}$ (C) $20 + 11\sqrt{2}$ (D) $21 + 11\sqrt{2}$	If I did not tell the truth yesterday I will certainly tell the truth tomorrow.			
(E) $21 + 12\sqrt{2}$	(A) 1 (B) 2 (C) 3 (D) 4 (E) 5			
2. The smallest element in the set $\left\{\frac{2017}{2018}, \frac{2018}{2019}, \frac{2019}{2020}, \frac{2020}{2021}, \frac{2021}{2022}\right\}$ is	29. Which of the following statements is /are true for the sequence 1, 11, 111, 1111,?			
(A) $\frac{2017}{2018}$ (B) $\frac{2018}{2019}$ (C) $\frac{2019}{2020}$ (D) $\frac{2020}{2021}$ (E) $\frac{2021}{2022}$ 3. 2017^2 is not equal to	I. Every fourth term is divisible by 1111. II. At least one term except the first term is a perfect fourth power. III. Every 3^n th term is divisible by 3^n .			
(A) $2017 \times 2018 - 2017$ (B) $2016 \times 2017 + 2017$ (C) $2016 \times 2018 + 1$ (D) $2016 \times 2018 + 2$ (E) $2015 \times 2019 + 4$	(A) None (B) I only (C) I and II only (D) I and III only (E) All			
 4. 2017 cubes of side 1 <i>cm</i> can be used to make a composite object by joining any two cubes by gluing two of their faces to coincide. What is the maximum possible surface area in square centimetres of such an object? (A) 6 × 2017 - 2 × 2014 (B) 6 × 2017 - 2016 (C) 6 × 2017 - 2 × 2016 	30. In a 100×100 grid a corner cell is colored red and all the other cells are colored blue. Consider the following recoloring operation: In any row or column colors of the cells are interchanged – red cells are colored blue and blue cells are colored red. Which of the following can be done through the recoloring operation?			
(D) $6 \times 2017 - 2 \times 2017$ (E) $6 \times 2017 - 2 \times 2018$	I. All the corner cells red.II. All the corner cells blue.			
5. If $A = \left\{ \frac{2017}{2018}, \frac{2018}{2019}, \frac{2019}{2020}, \dots \right\}$ then which of following statements is/are true? I. <i>A</i> has infinitely many elements.	III. One of the corner cells blue and the other corner cells red.			
II. <i>A</i> does not have a largest element.III. 1 is the largest element of <i>A</i>.	(A) I only (B) II only (C) III only (D) I and II only (E) All			
(A) None (B) I only (C) I and II only (D) I and III only (E) All				

23. What is the largest positive integer n such that there is a prime number p such that $p, p + 2, p + 2^2,, p + 2^n$ are all prime?					
(A) 1	(B) 2	(C) 3	(D) 4	(E) 5	

24. How many triangles are there in the following figure obtained by connecting all the vertices of a regular hexagon with straight line segments?


- (A) 80 (B) 90 (C) 100 (D) 110 (E) 120
- 25.In a 100×100 grid a positive integer is written in each cell such that each number is the average of its neighbours; above, below, right and left. A number could have 2,3 or 4 neighbours. Which of the following statements is/are true?
 - All the numbers must be distinct. I.
 - All the numbers must be same. II.

(A) 30°

Sum of all the numbers is divisible by 8. III.

(A) I only (B) II only (C) III only (D) I and III only (E) II and III only

26. In the following diagram each square has the side length 1cm. If E is the intersection point of line segments *AB* and *CD* what is the measure of $\angle DEB$ in degrees?

	-	-	the line segments <i>BC</i> , What is $\frac{Area \ of ABC}{Area \ of DEF}$?	AB and AD respectively,		
		E	A F D C			
(A) 3	(B) 1/3	(C) 8/27	(D) 27/8	(E) 16/27		
7. If the mo	7. If the mode of the positive integers 5, 6, 7, x , x equals their mean what is the mode?					
(A) 5	(B) 6	(C) 7	(D) 8	(E) 9		
8. a_1, a_2, a_3	8. $a_1, a_2, a_3, \dots, a_{100}$ are non-negative integers such that					
What is th	$(a_1 + a_3 + a_1 + a_2 + a_3)$		$a_4 + \dots + a_{100}) = 20$)17.		
(A) 1008	8 (B) 2016	(C) 2017	(D) 2018	(E) 4034		
9. What is the	9. What is the range of the values <i>a</i> , 6, 6.5, 7, 12, 2 <i>a</i> given in the increasing order?					
(A) 5	(B) 6	(C) 7	(D) 8	(E) 9		
Sinhala w of men to	women is 2 : 3 and	the ratio of Tamil e Sinhala and Tam	men to Tamil women	the ratio of Sinhala men to n is 3 : 2. What is the ratio there is an equal number of		
(A) 6:9	(B) 25:12	(C) 12:25	(D) 13:12	(E) 12 : 13		

11. Each cell of $a10 \times 10$ grid can be colored in red or blue. If each cell is distinct how many different coloring are there?	16. <i>ABC</i> is an equilateral triangle of side 10 cm and <i>P</i> is a point in the space. What is the minimum value in centimeters of $3PA + 4PB + 7PC$?
(A) 100 (B) 200 (C) 2^{10} (D) 2^{20} (E) 2^{100}	(A) 50 (B) 60 (C) 70 (D) 80 (E) 90
12. Let m and n be positive integers such that $3m + 7n$ is divisible by 11. Which of the following is always divisible by 11?	17. In the Martian language (see question 15) how many different words are there consisting of X ten times and Y five times such that between any two Y's there is at least one X?
(A) $m + n$ (B) $m + n + 5$ (C) $9m + 4n$ (D) $4m - 9n$ (E) $6m + 4n$	(A) 221 (B) 442 (C) 462 (D) 542 (E) 562
 13. A game is played by tossing a fair coin several times. If the outcome is a head, the player earns 1 point. If the outcome is a tail, the player earns -1 point. Which of the following statements is/are true? 	18. For each positive integer $n \text{ let } f(n) = k$, where k is the largest positive integer with 2^k divides $n(n + 1)(n + 2)$. Which of the following statements is/are true?
 I. It is not possible to earn 5 points by tossing the coin 10 times. II. There is only one way (one sequence of heads and tails) to earn 3 points by tassing the point 5 times. 	I. For each positive integer m , there is a positive integer n such that $f(n) = m$. II. There is a positive integer n such that $f(n) = f(n + 1)$. III. There are infinitely many positive integer n such that $f(n) = 1$
tossing the coin 5 times.III.III.It is possible to earn 0 points only in an even number of tosses.	(A) I only (B) II only (C) III only (D) I and II only (E) I and III only
(A) I only(B) II only(C) III only(D) I and II only(E) I and III only14. Five positive integers are such that any three numbers add up to at least 60. Which of the	19. Number 1 is written 100 times on a whiteboard. Consider the following operation: Cross out any two numbers and write 0 if they are equal and 1 if they are not equal. What is the last number that will be written on the board?
following statements is/are true?	(A) 0 (B) 1 (C) 2 (D) 3 (E) 4
 I. Each integer is at least 20. II. Product of three of the given integers is at least 20³. III. Product of any three of the given integers is at least 20³. 	20. What is the greatest integer that divides $p^4 - 1$ for every prime number p greater than 5?
(A) I only (B) II only (C) I and II only (D) II and III only (E) All	(A) 12 (B) 30 (C) 48 (D) 120 (E) 240 21. How many subsets $\{a, b\}$ of $\{1, 2,, 10\}$ are there such that $a < b - 4$?
15. The Martian alphabet has only 2 letters: <i>X</i> and <i>Y</i> . A word in the Martian language is an	(A) 10 (B) 15 (C) 20 (D) 25 (E) 30
arbitrary sequence of letters. How many different words of at most 5 letters are there in the Martian language?	22. Let $A = \{1, 2, 3, 4\}$ and f an assignment on A such that $f(i) \in A$ for $i = 1, 2, 3, 4$ and $f(f(i)) = i$ for each $i \in A$. How many such assignments are there?
(A) 30 (B) 32 (C) 42 (D) 52 (E) 62	(A) 9 (B) 10 (C) 12 (D) 13 (E) 19